

Issues in IPv6 Deployment

Jeff Doyle Professional Services jeff@juniper.net

Objective

A "wide but shallow" overview of the issues, proposed mechanisms, and protocols involved in successfully deploying IPv6

Assumption

- You attended the morning tutorial on IPv6 basics, or
- You already understand IPv6 basics
 - Addressing
 - * Header format
 - Extension headers
 - ICMPv6 and neighbor discovery
 - Address autoconfiguration

Agenda

- Drivers for IPv6 Deployment
- Routing IPv6
- Multihoming IPv6
- Transition Mechanisms
- Transition Issues

Agenda

- **♦** Routing IPv6
- ◆ Multihoming IPv6
- **◆ Transition Mechanisms**
- **◆ Transition Issues**

IPv6 Features

- Increased address space
 - 128 bits = 340 trillion trillion addresses
 - $(2^{128} = 340,282,366,920,938,463,463,374,607,431,768,211,456)$
 - **♦** = 67 billion billion addresses per cm² of the planet surface
- Hierarchical address architecture
 - Improved address aggregation
- More efficient header architecture
 - Improved routing efficiency, in some cases
- Neighbor discovery and autoconfiguration
 - Improved operational efficiency
 - Easier network changes and renumbering
 - Simpler network applications (Mobile IP)
- Integrated security features

IPv6 Drivers: IPv4 Address Exhaustion

- ◆ IPv4 addresses particularly scarce in Asia
 - Some U.S. universities and corporations have more IPv4 address space than some countries
- Imminent demise of IPv4 address space predicted since mid 1990's
- NAT + RFC 1918 has slowed that demise
- ◆ 70% of Fortune 1000 companies use NAT*

^{*}Source: Center for Next Generation Internet NGI.ORG

NAT Causes Problems

- Breaks globally unique address model
- Breaks address stability
- Breaks always-on model
- Breaks peer-to-peer model
- Breaks some applications
- Breaks some security protocols
- Breaks some QoS functions
- Introduces a false sense of security
- Introduces hidden costs

IPv6 = plentiful, global addresses = no NAT

IPv6 Drivers: Mobile IP

- Mobile nodes must be able to move from router to router without losing end-to-end connection
 - Home address: Maintains connectivity
 - Care-of address: Maintains route-ability

Mobile IP will require millions or billions of care-of

addresses

Current Wireless Subscribers

Region	Number	Regional Percentage
North America	156.6 Million	50.1%
Europe	366.8 Million	57.7%
Japan	72.8 Million	57.3%
Asia Pacific	332.2 Million	10.9%

Sources: U.S. Census Bureau, International Data Corp.

- ◆ "The network is the computer" –Sun Microsystems
- Every host is a client and a server
 - That is, a consumer and a producer

P2P:

A group of nodes actively participating in the computing process

- The Internet has evolved into a "Services in the Middle" model
- Information and services flow primarily toward the user
- Contributing factors:
 - Commercial interests
 - Legacy of low-powered PCs
 - NAT breaks network transparency

- Content sharing
 - Napster was a wake-up call
 - Kazaa
 - Morpheus, FreeNet, Grokster, Gnutella, many more...

- SETI@home
- Folding@home
- Popular Power
- United Devices

gnutella.com

Black-hat hackers already appreciate this (DDoS)

- Online gaming will be an early driver
- Current gaming market in U.S. \$210M
 - \$1.8B by 2005* (>100% PA growth)
 - Gamers account for 10% of U.S. broadband market**
 - * ¥271B (\$2.2B) industry in Japan by 2006***
 - 114 million gamers online by 2006****
- Millions of on-line gamers in Japan and Korea
- Microsoft investing \$2B in XBox Live
- Present online gaming mostly client/server
 - Forced by insufficient IPv4 addresses
 - Creates bandwidth bottlenecks

^{*} Source: NCSoft

^{**}Source: ISP-Planet.com

^{***}Source: Nomura Research Institute

^{****}Source: DFC Intelligence

IPv6 Drivers:Internet-Enabled Devices

- Internet-enabled appliances
 - Electrolux Screenfridge
 - Samsung Digital Network Refrigerator

- Internet-enabled automobiles
 - Already available in many luxury cars
 - Interesting research being conducted in Japan

IPv6 Drivers:Internet-Enabled Devices

- ◆ Internet-enabled ATMs
 - Fujitsu Series 8000
 - Infonox, Western Union conducting pilot program

Smart sensors

Bioelectronics

The common factor in all cases is:

MORE IP ADDRESSES

- For billions of new users
- For billions of new devices
- For always-on access
- For transparent Internet connectivity the way it was meant to be

Agenda

- ◆ Drivers for IPv6 Deployment
- Routing IPv6
- Multihoming IPv6
- **◆ Transition Mechanisms**
- **◆ Transition Issues**

MTU Path Discovery

- IPv6 routers do not fragment packets
- ◆ IPv6 MTU must be at least 1280 bytes
 - Recommended MTU: 1500 bytes
- Nodes should implement MTU PD
 - Otherwise they must not exceed 1280 bytes
- MTU path discovery uses ICMP "packet too big" error messages

Configuration Example: Static Route

```
[edit routing-options]
ps@R1# show
rib inet6.0 {
    static {
       route 3ffe::/16 next-hop 2001:468:1100:1::2;
    }
}
```


RIPng

- RFC 2080 describes RIPngv1, not to be confused with RIPv1
- Based on RIP Version 2 (RIPv2)
- Uses UDP port 521
- Operational procedures, timers and stability functions remain unchanged
- RIPng is not backward compatible to RIPv2
- Message format changed to carry larger IPv6 addresses

Configuration Example: RIPng

```
[edit protocols]
lab@Juniper5# show
ripng {
  group external_neighbors {
    export default_route;
    neighbor ge-0/0/0.0;
    neighbor ge-0/0/1.0;
    neighbor ge-0/0/2.0;
  group internal_neighbors {
    export external_routes;
    neighbor ge-1/0/0.0;
```


IS-IS

- draft-ietf-isis-ipv6-02.txt, Routing IPv6 with IS-IS
- 2 new TLVs are defined:
 - IPv6 Reachability (TLV type 236)
 - IPv6 Interface Address (TLV type 232)
- **◆ IPv6 NLPID = 142**

Configuration Example: IS-IS for IPv6 Only

By default, IS-IS routes both IPv4 and IPv6

```
lab@Juniper5# show
isis {
    no-ipv4-routing;
    interface ge-0/0/1.0;
    interface ge-0/0/2.0;
}
```


OSPFv3

- Unlike IS-IS, entirely new version required
- ◆ RFC 2740
- Fundamental OSPF mechanisms and algorithms unchanged
- Packet and LSA formats are different

OSPFv3 Differences from **OSPFv2**

- Runs per-link rather than per-subnet
 - Multiple instances on a single link
- More flexible handling of unknown LSA types
- Link-local flooding scope added
 - Similar to flooding scope of type 9 Opaque LSAs
 - Area and AS flooding remain unchanged
- Authentication removed
- Neighboring routers always identified by RID
- Removal of addressing semantics
 - IPv6 addresses not present in most OSPF packets
 - RIDs, AIDs, and LSA IDs remain 32 bits

OSPFv3 LSAs

Туре	Description
0x2001	Router-LSA
0x2002	Network-LSA
0x2003	Inter-Area-Prefix-LSA
0x2004	Inter-Area-Router-LSA
0x2005	AS-External-LSA
0x2006	Group-Membership-LSA
0x2007	Type-7-LSA (NSSA)
0x2008	Link-LSA
0x2009	Intra-Area-Prefix-LSA

Configuration Example: OSPFv3

```
[edit protocols]
lab@Juniper5# show
ospf3 {
  area 0.0.0.0 {
     interface ge-1/1/0.0;
  area 192.168.1.2 {
     interface ge-0/0/1.0;
     interface ge-0/0/2.0;
```


Multiprocotol BGP-4

- MBGP defined in RFC 2283
- Two BGP attributes defined:
 - Multiprotocol Reachable NLRI advertises arbitrary Network Layer Routing Information
 - Multiprotocol Unreachable NLRI withdraws arbitrary Network Layer Routing Information
 - Address Family Identfier (AFI) specifies what NLRI is being carried (IPv6, IP Multicast, L2VPN, L3VPN, IPX...)
- Use of MBGP extensions for IPv6 defined in RFC 2545
 - ❖ IPv6 AFI = 2
- BGP TCP session can be over IPv4 or IPv6
- Advertised Next-Hop address must be global or site-local IPv6 address
 - And can be followed by a link-local IPv6 address
 - Resolves conflicts between IPv6 rules and BGP rules

Example Configuration: BGP

```
[edit protocols]
lab@Juniper5# show
bgp {
  group IPv6 external {
    type external;
    import v6_externals;
    family inet6 {
       unicast;
    export v6 routes;
    peer-as 65502;
    neighbor 3ffe:1100:1::b5;
  group IPv6_internal {
    type internal;
    local-interface lo0.0;
    family inet6 {
       unicast;
    neighbor 2001:88:ac3::51;
    neighbor 2001:88:ac3::75;
```


Agenda

- ◆ Drivers for IPv6 Deployment¹
- **♦** Routing IPv6
- Multihoming IPv6
- ◆ Transition Mechanisms
- **◆ Transition Issues**

What is Multihoming?

- Host multihoming
 - More than one unicast address on an interface
 - Interfaces to more than one network
- Site multihoming
 - Multiple connections to the same ISP
 - Connections to multiple ISPs

Site Multihoming

Why Multihome?

- Redundancy
 - Against router failure
 - Against link failure
 - Against ISP failure
- Load sharing
- Local connectivity across large geography
- Corporate or external policies
 - Acceptable use policies
 - * Economics

The Multihoming Problem

- **♦ ISP2** must advertise additional prefix
- ◆ ISP1 must "punch a hole" in its CIDR block
- Contributes to routing table explosion
- Contributes to Internet instability
 - Due to visibility of customer route flaps
 - Due to increased convergence time
- Same problem can apply to provider-independent (PI) addresses

IPv6 and The Multihoming Problem

- ◆ IPv6 does not have a set solution to the problem
- Currently, 6Bone disallows IPv4-style multihoming (RFC 2772)
 - ISPs cannot advertise prefixes of other ISPs
 - Sites cannot advertise to upstream providers prefixes longer than their assigned prefix
- However, IPv6 offers the possibility of one or more solutions
 - Router-based solutions
 - Host-based solutions
 - Mobile-based solutions
 - Geographic or Exchange-based solutions

Multihoming Requirements

Requirements for IPv6 Site-Multihoming Architectures (draft-ietf-multi6-multihoming-requirements-03)

- Must support redundancy
- Must support load sharing
- Protection from performance difficulties
- Support for multihoming for external policy reasons
- Must not be more complex than current IPv4 solutions
- Re-homing transparency for transport-layer sessions (TCP, UDP, SCTP)
- No impact on DNS
- Must not preclude packet filtering
- Must scale better than IPv4 solutions
- Minor impact on routers
- No impact on host connectivity
- May involve interaction between hosts and routers
- Must be manageable
- Must not require cooperation between transit providers

Possible Solution #1: Do Nothing

- Allow Internet default free zone (DFZ) to continue to grow
- Put responsibility on router vendors to keep increasing memory, performance to compensate

Pros:

- As simple as it gets
- No special designs, policies, or mechanisms needed

Cons:

- Does nothing to increase Internet stability
- Large routing tables = Large convergence times
- No guarantee vendors can continue to stay ahead of the curve

Possible Solution #2: GSE/8+8

GSE: Global, Site, and End System Address Elements
(draft-ipng-gseaddr-00.txt)
(draft-ietf-ipngwg-esd-analysis-05.txt)

- Router-based solution
- Key concepts:
 - Distinct separation of Locator and Identifier entities in IPv6 addresses
 - Rewriting of locator (Routing Goop) at Site Exit Router
 - Identifier (End System Designator) is globally unique
 - DNS AAA records and RG records

Possible Solution #2: GSE/8+8

Possible Solution #2: GSE/8+8

- GSE as proposed rejected by IPng WG in 1997
 - Thought to introduce more problems than it solved
 - ◆ "Separating Identifiers and Locators in Addresses: An Analysis of the GSE Proposal for IPv6" (draft-ietf0ipngwg-esd-analysis-04.txt)
 - But, concept is still being discussed

Possible Solution #3: Multihoming with Route Aggregation

(draft-ietf-ipngwg-ipv6multihome-with-aggr-01.txt)

- Router-based solution
- Customer site gets PA from primary ISP
- PA advertised to both ISPs, but not upstream
- PA advertised from ISP2 to ISP1

Possible Solution #3: Multihoming with Route Aggregation

Pros:

- No new protocols or modifications needed
- Fault tolerance for links 1 and 2
- Load sharing with ISPs 1 and 2
- Link failure does not break established TCP sessions

Cons:

- No fault tolerance if ISP1 or link 4 fails
- No load sharing if link 3 fails
- Problematic if link 3 must pass through intermediate ISP
- Assumes ISP1 and ISP2 are willing to provide link 3 and appropriate route advertisements

Possible Solution #4: Multihoming Using Router Renumbering

(draft-ietf-ipngwg-multi-isp-00.txt)

- Router-based solution
- All customer device interfaces carry addresses from each ISP
- Router Advertisements and Router Renumbering Protocol (RFC 2894) used

Possible Solution #4: Multihoming Using Router Renumbering

If an ISP fails:

- Site border router detecting failure sends RAs to deprecate ISP's delegated addresses
- Router Renumbering Protocol propagates information about deprecation to internal routers

Pros:

- No new protocols or modifications needed
- Fault tolerance for both links and ISPs

Cons:

- No clear criteria for selecting among multiple interface addresses
- No clear criteria for load sharing among ISPs
- Link or ISP failure breaks established TCP sessions

Possible Solution #4: Multihoming Support at Site Exit Routers

(RFC 3178)

- Router-based solution
- Links 3 and 4 (IP in IP tunnels) configured as secondary links
- Primary and secondary links on separate physical media for link redundancy
- Prefixes advertised over secondary links have weak preference relative to prefixes advertised over primary links

Possible Solution #4: Multihoming Support at Site Exit Routers

Pros:

- No new protocols or modifications needed
- Link fault tolerance
- Link failure does not break established TCP sessions

Cons:

- No fault tolerance if ISP fails
- No clear criteria for selecting among multiple interface addresses
- No clear criteria for load sharing among ISPs

(draft-huitema-multi6-hosts-01.txt)

- Host- and router-based solution
- Key Concepts:
 - Multiple addresses per host interface
 - Site exit router discovery
 - Site exit anycast address
 - Site exit redirection
 - New Site Exit Redirection ICMP message defined

- Site anycast address indicates site exit address
- Site anycast address advertised via IGP
- Hosts tunnel packets to selected site exit router

Site redirection:

- 1. Tunnels created between all site exit routers
- 2. Source address of outgoing packets examined
- 3. Packet tunneled to correct site exit router
- 4. Site exit redirect sent to host

Pros:

- Fault tolerant of link, router, and ISP failure
- Overcomes problem of ingress source address filtering at ISPs

Cons:

- Requires new ICMP message
- Requires modification to both routers and hosts
- Tunneling can become complex
 - Between site exit routers
 - Hosts to all site exit routers

And Many Other Proposed Solutions...

- Extension Header for Site Multihoming Support
 - (draft-bagnulo-multi6-mhExtHdr-00.txt)
- Host Identity Payload Protocol (HIP)
- Exchange-Based Aggregation
- Multihoming Aliasing Protocol (MHAP)
- Provider-Internal Aggregation Based on Geography to Support Multihoming in IPv6
 - (draft-van-beijnum-multi6-isp-int-aggr-00.txt)
- GAPI: A Geographically Aggregatable Provider Independent Address Space to Support Multihoming in IPv6
 - * (draft-py-multi6-gapi-00.txt)
- An IPv6 Provider-Independent Global Unicast Address Format
 - (draft-hain-ipv6-pi-addr-03.txt)

Other IPv6 Multihoming Issues

- How does a host choose between multiple source and destination addresses?
 - See draft-ietf-ipv6-default-addr-select-09
- How are DNS issues resolved?
 - * See RFC 2874, "DNS Extensions to Support IPv6 Address Aggregation and Renumbering," section 5.1, for DNS proposals for multihoming

Agenda

- ◆ Drivers for IPv6 Deployment¹
- **♦** Routing IPv6
- **◆ Multihoming IPv6**
- Transition Mechanisms
- **◆ Transition Issues**

Transition Assumptions

- No "Flag Day"
 - **♦ Last Internet transition was 1983 (NCP → TCP)**
- Transition will be incremental
 - Possibly over several years
- No IPv4/IPv6 barriers at any time
- No transition dependencies
 - No requirement of node X before node Y
- Must be easy for end user
 - Transition from IPv4 to dual stack must not break anything
- IPv6 is designed with transition in mind
 - Assumption of IPv4/IPv6 coexistence
- Many different transition technologies are A Good Thing™
 - "Transition toolbox" to apply to myriad unique situations

Types of Transition Mechanisms

- Dual Stacks
 - * IPv4/IPv6 coexistence on one device
- Tunnels
 - For tunneling IPv6 across IPv4 clouds
 - Later, for tunneling IPv4 across IPv6 clouds
 - ❖ IPv6 <-> IPv6 and IPv4 <-> IPv4
- ◆ Translators
 - * IPv6 <-> IPv4

Dual Stacks

 Network, Transport, and Application layers do not necessarily interact without further modification or translation

"Dual Layers"

Tunnel Applications

Router to Router

Host to Host

- Kouter / Router to Host

Tunnel Types

- Configured tunnels
 - Router to router
- Automatic tunnels
 - Tunnel Brokers (RFC 3053)
 - Server-based automatic tunneling
 - 6to4 (RFC 3056)
 - Router to router
 - ISATAP (Intra-Site Automatic Tunnel Addressing Protocol)
 - Host to router, router to host
 - Maybe host to host
 - 6over4 (RFC 2529)
 - Host to router, router to host
 - Teredo
 - For tunneling through IPv4 NAT
 - * IPv64
 - For mixed IPv4/IPv6 environments
 - DSTM (Dual Stack Transition Mechanism)
 - ◆ IPv4 in IPv6 tunnels

Configuration Example: Configured GRE Tunnel


```
gr-0/0/0 {
    unit 0 {
        tunnel {
            source 172.16.1.1;
            destination 192.168.2.3;
        }
        family inet6 {
            address 2001:240:13::1/126;
        }
    }
}
```

```
gr-1/0/0 {
    unit 0 {
        tunnel {
            source 192.168.2.3;
            destination 172.16.1.1;
        }
        family inet6 {
            address 2001:240:13::2/126;
        }
    }
}
```


Configuration Example: Configured MPLS Tunnel

PE Router:

```
mpls {
  ipv6-tunneling;
  label-switched-path v6-tunn
                                      IPv6
    to 192.168.2.3;
    no-cspf;
bgp {
                                                          IPv6 LSP
  group IPv6-neighbors {
                                  PE
    type internal;
    family inet6 {
                                                        IPv4 MPLS
       labeled-unicast {
         explicit-null;
                                                                                      CE
                                                                                 IPv6
    neighbor 192.168.2.3;
```


Tunnel Setup Protocol (TSP)

- Proposed control protocol for negotiating tunnel parameters
 - Applicable to several IPv6 tunneling schemes
 - Can negotiate either IPv6 or IPv4 tunnels
 - Uses XML messages over TCP session
- Example tunnel parameters:
 - IP addresses
 - Prefix information
 - Tunnel endpoints
 - DNS delegation
 - Routing information
 - Server redirects
- Three TSP phases:
 - 1. Authentication Phase
 - 2. Command Phase (client to server)
 - 3. Response Phase (server to client)

Tunnel Broker

- RFC 3053 describes general architecture, not a specific protocol
- Designed for small sites and isolated IPv6 hosts to connect to an existing IPv6 network
- Three basic components:
 - Client: Dual-stacked host or router, tunnel end-point
 - Tunnel Broker: Dedicated server for automatically managing tunnel requests from users, sends requests to Tunnel Server
 - Tunnel Server: Dual-stacked Internet-connected router, other tunnel end point
- A few tunnel brokers:
 - Freenet6 [Canada] (www.freenet6.net)
 - CERNET/Nokia [China] (www.tb.6test.edu.cn)
 - Internet Initiative Japan (www.iij.ad.jp)
 - Hurricane Electric [USA] (www.tunnelbroker.com)
 - * BTexacT [UK] (www.tb.ipv6.btexact.com)
 - Many others...

Tunnel Broker

6to4

- Designed for site-to-site and site to existing IPv6 network connectivity
- Site border router must have at least one globally-unique IPv4 address
- Uses IPv4 embedded address

Example:

Reserved 6to4 TLA-ID: 2002::/16

IPv4 address: 138.14.85.210 = 8a0e:55d2

Resulting 6to4 prefix: 2002:8a0e:55d2::/48

- Router advertises 6to4 prefix to hosts via RAs
- Embedded IPv4 address allows discovery of tunnel endpoints

6to4

Configuration Example: Windows XP 6to4 Interface

C:\Documents and Settings\Jeff Doyle>ipv6 if 3 Interface 3: 6to4 Tunneling Pseudo-Interface does not use Neighbor Discovery does not use Router Discovery preferred global 2002 4172:a85b::4172:a85b, life infinite link MTU 1280 (true link MTU 65515) current hop limit 128 reachable time 23000ms (base 30000ms) retransmission interval 1000ms DAD transmits 0 6to4 Prefix **= 65.114.168.91**

ISATAP

- Forms 64-bit Interface ID from IPv4 address + special reserved identifier
 - * Format: ::0:5efe:W.X.Y.Z
 - * 0:5efe = 32-bit IANA-reserved identifier
 - W.X.Y.Z = IPv4 address mapped to last 32 bits

Example:

IPv4 address:

65.114.168.91

Global IPv6 prefix:

2001:468:1100:1::/64

Link-local address:

fe80::5efe:65.114.168.91

Global IPv6 address:

2001:468:1100:1::5efe:65.114.168.91

ISATAP

Configuration Example: Windows XP ISATAP Interface

C:\Documents and Settings\Jeff Doyle>ipv6 if 2 **Interface 2: Automatic Tunneling Pseudo-Interface** does not use Neighbor Discovery does not use Router Discovery router link-layer address: 0.0.0.0 EUI-64 embedded IPv4 address: 0.0.0.0 preferred link-local fe80::5efe:169.254.113.126, life infinite preferred link-local fe80: 5efe 65.114.168.91) life infinite preferred global ::65,114.168.91, life infinite link MTU 1280 (true link MTU 65515) current hop limit 128 reachable time 24000ms (base 30000ms) retransmission interval 1000ms DAD transmits 0

6over4

- aka "Virtual Ethernet"
- Early proposed tunnel solution
- Isolated IPv6 hosts create their own tunnels
- Encapsulates IPv6 packets in IPv4 (protocol type 41)
- Assumes IPv4 multicast domain
 - Multicast for neighbor/router discovery, autoconfiguration

Example IPv4 Multicast Address:

239,192,A,B

A, B = Last 2 Bytes of IPv6 Address

Teredo

- aka "Shipworm"
- For tunneling IPv6 through one or several NATs
 - Other tunneling solutions require global IPv4 address, and so do not work from behind NAT
 - Can be stateless or stateful (using TSP)
- Tunnels over UDP (port 3544) rather than IP protocol #41
- Basic components:
 - Teredo Client: Dual-stacked node
 - Teredo Server: Node with globally routable IPv4 Internet access, provides IPv6 connectivity to client
 - Teredo Relay: Dual-stacked router providing connectivity to client
 - Teredo Bubble: IPv6 packet with no payload (NH #59) for creating mapping in NAT
 - Teredo Service Prefix: Prefix originated by TS for creating client IPv6 address

Teredo

IPv64

Proposed for highly interconnected IPv4 and IPv6 networks

(mid-transition)

IPv64 packets: IPv6 encapsulated in IPv4

❖ 48th bit of IPv4 header indicates IPv64 packet

- IPv64 routers:
 - Process IPv64 packets as IPv6
 - Process IPv4 packets as IPv4
 - Process IPv6 packets as IPv6
- IPv4 routers:
 - Process IPv64 packets as IPv4
- **IPv6** routers:
 - Cannot process IPv64 packets
 - IPv64-to-IPv4 translation required at IPv64 routers
 - Proposed IPv6 Extension Header carries necessary IPv4 information for re-translating back to IPv64, if necessary

0 = IPv4

Dual-Stack Transition Mechanism (DSTM)

- aka 4over6
 - Tunnels IPv4 over IPv6 networks
 - Next-Header Number for IPv4 = 4
- Three basic components:
 - Tunnel End Point: Border router between IPv6-only network and IPv4 Internet or intranet
 - DSTM Clients: Dual-stacked nodes, create tunnels to Tunnel End Pont (TEP)
 - DSTM Address Server: Allocates IPv4 addresses to clients
- Uses existing protocols
 - DSTM Server can communicate with Client or TEP via DHCPv6 or TSP
- Server can optionally assign port range for IPv4 address conservation
 - Multiple clients have same IPv4 address, different port ranges

DSTM

1.

Translators

- Network level translators
 - Stateless IP/ICMP Translation Algorithm (SIIT)(RFC 2765)
 - NAT-PT (RFC 2766)
 - Bump in the Stack (BIS) (RFC 2767)
- Transport level translators
 - Transport Relay Translator (TRT) (RFC 3142)
- Application level translators
 - Bump in the API (BIA)(RFC 3338)
 - SOCKS64 (RFC 3089)
 - Application Level Gateways (ALG)

Stateless IP/ICMP Translation (SIIT)

- ◆ Translator replaces headers IPv4 ⇔IPv6
- Translates ICMP messages
 - Contents of message translated
 - ICMP pseudo-header checksum added
- Fragments IPv4 messages to fit IPv6 MTU when necessary
- Uses IPv4-translated addresses to refer to IPv6enabled nodes
- Uses IPv4-mapped addresses to refer to IPv4only nodes
- Requires IPv6 hosts to acquire an IPv4 address
 - SIIT must know these addresses

Stateless IP/ICMP Translation (SIIT)

204.127.202.4 IPv4 **Network** Source = 216.148.227.68 Dest = 204.127.202.4IPv6 Network Source = 204.127.202.4SIIT Dest = 216.148.227.68Source = ::ffff:0:216.148.227.68 Dest = ::ffff:204.127.202.4 Source = ::ffff:204.127.202.4 Dest = ::ffff:0:216.148.227.68 SIIT also changes: •Traffic Class ← → TOS 3ffe:3700:1100:1:210:a4ff:fea0:bc97 Payload length 216.148.227.68 Protocol Number ← → NH Number •TTL ← → Hop Limit

Network Address Translation - Protocol Translation (NAT-PT)

- Stateful address translation
 - Tracks supported sessions
 - Inbound and outbound session packets must traverse the same NAT
- Uses SIIT for protocol translation
- Two variations:
 - Basic NAT-PT provides translation of IPv6 addresses to a pool of IPv4 addresses
 - NAPT-PT manipulates IPv6 port numbers so that multiple IPv6 sources can share a single IPv4 address
- DNS Application Level Gateway (DNS-ALG) is also specified, but has some problems
 - Internal A queries might return AAAA record
 - Possible problems for internal zone transfers, mixed v4/v6 networks, etc.
 - Possible problems resolving to external dual-stacked hosts
 - Assumes DNS traffic traverses NAT-PT box (topology limitation)
 - No DNS-sec
 - Vulnerable to DoS attacks by depletion of address pools
 - See:
 - draft-durand-natpt-dns-alg-issues-00 for more information
 - draft-hallin-natpt-dns-alg-solutions-01 for some proposed solutions

Network Address Translation - Protocol Translation (NAT-PT)

Network Address Translation - Protocol Translation (NAT-PT)

Bump in the Stack (BIS)

- Translator resides in host
- Allows IPv4 applications to run on IPv6 host
- Three components:
 - * Translator
 - IPv4 ← → IPv6
 - Uses SIIT
 - * Address mapper
 - Maintains IPv4 address pool
 - Maps IPv6 addresses to IPv4 addresses
 - Extension Name Resolver
 - Manages DNS queries
 - Converts AAAA records to A records
 - Similar to NAT-PT DNS ALG

Transport Relay Translator (TRT)

- aka TCP/UDP Relay
- Based on proxy firewall concept
- No IP packets transit the TRT
- Two connections established:
 - Initiator to TRT
 - TRT to target node
- Requires "special" DNS to translate IPv4 addresses into IPv6 and vice versa
 - TRT does not translate DNS queries/records
- Only works with TCP and UDP

Transport Relay Translator (TRT)

 Query to "special" DNS from v6host for v4host.4net.org returns:

AAAA fec0:0:0:1::204.127.202.4

IPv4 Network

v4host.4net.org 204.127.202.4

TCP/IPv4 Session Source = 216.148.227.68 Dest = 204.127.202.4

TCP/IPv6 Session

Source = 3ffe:3700:1100:1:210:a4ff:fea0:bc97

Dest = fec0:0:0:1::204.127.202.4

TRT

TCP/IPv4 Session Source = 204.127.202.4

Dest = 216.148.227.68

"Dummy" IPv6 Prefix =

fec0:0:0:1::/64 IPv4 Address =

TCP/IPv6 Session 216.148.227.68

Source = fec0:0:0:1::204.127.202.4

Dest = 3ffe:3700:1100:1:210:a4ff:fea0:bc97

v6host.6net.com 3ffe:3700:1100:1:210:a4ff:fea0:bc97 IPv6 Network

Bump in the API (BIA)

- Allows dual-stacked IPv6 hosts to use IPv4 applications
 - Same goal as BIS, but translation is between IPv4 and IPv6 APIs
 - API Translator resides between socket API module and IPv4/IPv6 TCP/IP modules
 - No header translation required
 - Uses SIIT for conversion mechanism

Bump in the API (BIA)

- API Translator consists of three modules:
 - Name Resolver intercepts IPv4 DNS calls, uses IPv6 calls instead

Address Mapper maintains mappings of internal pool unassigned

of IPv4 addresses (0.0.0.1 ~ 0.0.0.255) to IPv6 addresses

Function Mapper translates
 IPV4 socket API functions to
 IPv6 socket API functions
 and vice versa

SOCKS64

- Uses existing SOCKSv5 protocol
 - **RFC 1928**
 - Designed for firewall systems
- Two basic components:
 - * Gateway
 - SOCKS server
 - IPv4 and IPv6 connections terminate at gateway
 - Gateway relays connections at application layer
 - *** SOCKS Lib**
 - Installs on client between application layer and socket layer
 - Can replace:
 - Applications' socket APIs
 - DNS name resolving APIs
 - ◆ Maintains mapping table between "fake" IPv4 addresses (0.0.0.1 ~ 0.0.0.255) and logical host names (FQDNs)

SOCKS64

Application Layer Gateways

- Application-specific translator
- Needed when application layer contains IP address
- Similar to ALGs used in firewalls, some NATs

Agenda

- ◆ Drivers for IPv6 Deployment
- **♦** Routing IPv6
- Multihoming IPv6
- ◆ Transition Mechanisms
- Transition Issues

Transition Issues: DNS

- Namespace fragmentation
 - Some names on IPv4 DNS, others on IPv6 DNS
 - How does an IPv4-only host resolve a name in the IPv6 namespace, and vice versa?
 - How does a dual-stack host know which server to query?
 - * How do root servers share records?
- MX records
 - How does an IPv4 user send mail to an IPv6 user and vice versa?
- Solutions:
 - Dual stacked resolvers
 - Every zone must be served by at least one IPv4 DNS server
 - Use translators
 - NAT-PT does not work for this
 - totd: proxy DNS translator
- Some DNS transition issues discussed in RFC 1933, Section 3.2

DNS AAAA Records

- RFC 1886
- BIND 4.9.4 and up; BIND 8 is recommended
- Simple extension of A records
 - Resource Record type = 28
 - Query types performing additional section processing (NS, MX, MB) redefined to perform both A and AAAA additional section processing
- ip6.int, ipv6.arpa analogous to in-addr.arpa for reverse mapping
 - IPv6 address represented in reverse, dotted hex nibbles

AAAA record:

homer	IN	AAAA	2001:4210:3:ce7:8:0:abcd:1234
-------	----	------	-------------------------------

PTR record:

4.3.2.1.d.c.b.a.0.0.0.0.8.0.0.0.7.e.c.0.3.0.0.0.0.1.2.4.1.0.0.2.ip6.int. IN PTR homer.simpson.net

RFC 3152 deprecates ip6.int in favor of ip6.arpa

DNS A6 Records

- Proposed alternative to AAAA records
 - RFC 2874
 - Resource Record type = 38
- A6 RR can contain:
 - Complete IPv6 address, or
 - Portion of address and information leading to one or more prefixes
- Supported in BIND 9
- More complicated records, but easier renumbering
 - Segments of IPv6 address specified in chain of records
 - Only relevant records must be changed when renumbering
 - Separate records can reflect addressing topology

A6 Record Chain

Queried Name: homer.simpson.net

\$ORIGIN simpson.net

homer IN A6 64 ::8:0:abcd.1234 sla5.subnets.simpson.net.

\$ORIGIN subnets.simpson.net

sla5 IN A6 48 0:0:0:ce7:: site3.sites.net.

\$ORIGIN sites.net

site3 IN A6 32 0:0:3:: area10.areas.net.

\$ORIGIN areas.net

area10 IN A6 24 0:10:: tla1.tlas.net.

\$ORIGIN tlas.net

tla1 IN A6 0 2001:4200::

Returned Address: 2001:4210:3:ce7:8:0:abcd:1234

Bitstring Labels

- New scheme for reverse lookups
- Bitstring Labels: RFC 2874
- Bitstring Labels for IPv6: RFC 2673

Examples:

Address:

2001:4210:3:ce7:8:0:abcd:1234

Bitstring labels:

 $\[x2001421000030ce700080000abcd1234/128\].ip6.arpa.$

\[x00080000abcd1234/64].\[x0ce7/16].\[x20014210/48].ip6.arpa.

- Pro:
 - More compact than textual (ip6.int) representation
- Con:
 - All resolvers and authoritative servers must be upgraded before new label type can be used
- RFC 3152 deprecates ip6.int in favor of ip6.arpa

DNAME

- **◆ DNAME: RFC 2672**
- DNAME for IPv6: RFC 2874
- Provides alternate naming to an entire subtree of domain name space
 - Rather than to a single node
- Chaining complementary to A6 records
- DNAME not much more complex than CNAME
- DNAME changed from Proposed Standard to Experimental status in RFC 3363

DNAME Reverse Lookup

Queried Address: 2001:4210:3:ce7:8:0:abcd:1234

\$ORIGIN ip6.arpa. \[x200142/24]	IN	DNAME	ip6.tla.net
<pre>\$ORIGIN ip6.tla.net \[x10/8]</pre>	IN	DNAME	ip6.isp1.net
\$ORIGIN ip6.isp1.net \[x0003/16]	IN	DNAME	ip6.isp2.net
\$ORIGIN ip6.isp2.net \[x0ce7/16]	IN	DNAME	ip6.simpson.net
\$ORIGIN ip6.simpson.net \[x00080000abcd1234/64]	IN	PTR	homer.simpson.net

Returned Name: homer.simpson.net

AAAA or A6?

- Good discussion of tradeoffs in RFC 3364
- AAAA Pros:
 - Essentially identical to A RRs, which are backed by extensive experience
 - "Optimized for read"
- AAAA Cons:
 - Difficult to inject new data
- A6 Pros:
 - "Optimized for write"
 - Possibly superior for rapid renumbering, some multihoming approaches (GSE-like routing)
- A6 Cons:
 - Long chains can reduce performance
 - Very little operational experience
- A6 RRs changed from Proposed Standard to Experimental status in RFC 3363
 - AAAA preferred for production deployment

Transition Issues: Security

- Many transition technologies open security risks such as DoS attacks
- Examples:
 - Abuse of IPv4 compatible addresses
 - Abuse of 6to4 addresses
 - Abuse of IPv4 mapped addresses
 - Attacks by combining different address formats
 - Attacks that deplete NAT-PT address pools

Transition Planning

- Assumption: Existing IPv4 network
- Easy Does It
 - Deploy IPv6 incrementally, carefully
- Have a master plan
- Think IPv4/IPv6 interoperability, not migration
- Evaluate hardware support
- Evaluate application porting
- Monitor IETF v6ops WG
 - ngtrans wg has been closed

Transition Strategies

- Edge-to-core
 - The edge is the killer app!
 - When services are important
 - When addresses are scarce
 - User (customer) driven
- Core-to-edge
 - Good ISP strategy
- By routing protocol area
 - When areas are small enough
- By subnet
 - Probably too incremental

Transition Lessons from the Past

- KEEP TRANSITION SIMPLE
- Limit scope and interaction of mechanisms
- Beware of semantic interdependence
- Make sure normal humans can fully understand the interactions and implications of all mechanisms
- ◆ Transition/Migration is <u>THE</u> hard part
 - Ensuring existing products do IPv6 well
 - Keeping transition mechanisms under control

Thank You!

http://www.juniper.net jeff@juniper.net